706 research outputs found

    When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds

    Get PDF
    Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24-hour day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We find substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24-hour activity cycles, were continuously active (arrhythmic), or showed “free-running” activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions

    Nocturnal activity by the primarily diurnal Central American agouti (Dasyprocta punctata) in relation to environmental conditions, resource abundance and predation risk

    Get PDF
    An animal's fitness is in part based on its ability to manage the inherent risks (foraging costs, predation, exposure to disease) with the benefits (resource gain, access to mates, social interactions) of activity (Abrams 1991, Altizer et al. 2003, Lima & Bednekoff 1999, Rubenstein & Hohmann 1989, Wikelski et al. 2001). Thus, understanding an animal's pattern of activity is key to understanding behavioural and ecological processes. However, while numerous laboratory methodologies are available to continuously quantify activity over long periods of time, logistical difficulties have greatly hindered activity studies of animals in the field (DeCoursey 1990)

    Estudio de una escultura con inscripción ibérica procedente del santuario del Cerro de los Santos

    Get PDF
    La línea de trabajo sobre imagen en la cultura ibérica ha aportado a la arqueología ibérica excelentes resultados, tanto desde el punto de vista de la dinamización teórica de la disciplina, como en su aplicación concreta al estudio y la interpretación de determinados programas iconográficos en sus contextos arqueológicos (OLMOS 1992, 1996; ARANEGUI 1997, entre otros). Uno de los sujetos de investigación de especial relevancia de esta línea ha sido la religiosidad y sus diversas manifestaciones. En este sentido, los exvotos ibéricos labrados en caliza y bronce (RUIZ BREMÓN 1989a; PRADOS1992), sin olvidar aquellos elaborados en terracota, representan un material de estudio privilegiado

    Olfactory lateralization in homing pigeons: a GPS study on birds released with unilateral olfactory inputs

    Get PDF
    A large body of evidence has shown that pigeons rely on an olfactory-based navigational map when homing from unfamiliar locations. Previous studies on pigeons released with one nostril occluded highlighted an asymmetry in favour of the right nostril, particularly concerning the initial orientation performance of naïve birds. Nevertheless, all pigeons experiencing only unilateral olfactory input showed impaired homing, regardless of the side of the occluded nostril. So far this phenomenon has been documented only by observing the birds’ vanishing bearings. In the present work we recorded the flight tracks of pigeons with previous homing experience equipped with a GPS data logger and released from an unfamiliar location with the right or the left nostril occluded. The analysis of the tracks revealed that the flight path of the birds with the right nostril occluded was more tortuous than that of unmanipulated controls. Moreover, the pigeons smelling with the left nostril interrupted their journey significantly more frequently and displayed more exploratory activity than the control birds, e.g. during flights around a stopover site. These data suggest a more important involvement of the right olfactory system in processing the olfactory information needed for the operation of the navigational map

    Reduction of hydraulic losses in a piston pump

    Get PDF
    The hydraulic losses are the decrease in energy of the fluid due to vortex formation, friction between the fluid and the pipe, changing the flow of fluid. The decrease in energy of the fluid, in turn, leads to the following consequences: decrease efficiency, increase energy consumption and decrease cavitation stock pump. The main danger in a piston pump is to reduce cavitation stock. This leads to boiling of water by pressure reduction and rapid destruction the flow part of the pump

    Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth

    Get PDF
    Each year, trillions of insects make long-range seasonal migrations. These movements are relatively well understood at a population level, but how individual insects achieve them remains elusive. Behavioral responses to conditions en route are little studied, primarily owing to the challenges of tracking individual insects. Using a light aircraft and individual radio tracking, we show that nocturnally migrating death's-head hawkmoths maintain control of their flight trajectories over long distances. The moths did not just fly with favorable tailwinds; during a given night, they also adjusted for head and crosswinds to precisely hold course. This behavior indicates that the moths use a sophisticated internal compass to maintain seasonally beneficial migratory trajectories independent of wind conditions, illuminating how insects traverse long distances to take advantage of seasonal resources

    Genetic Impact of a Severe El Niño Event on Galápagos Marine Iguanas (Amblyrhynchus cristatus)

    Get PDF
    The El Niño-Southern Oscillation (ENSO) is a major source of climatic disturbance, impacting the dynamics of ecosystems worldwide. Recent models predict that human-generated rises in green-house gas levels will cause an increase in the strength and frequency of El Niño warming events in the next several decades, highlighting the need to understand the potential biological consequences of increased ENSO activity. Studies have focused on the ecological and demographic implications of El Niño in a range of organisms, but there have been few systematic attempts to measure the impact of these processes on genetic diversity in populations. Here, we evaluate whether the 1997–1998 El Niño altered the genetic composition of Galápagos marine iguana populations from eleven islands, some of which experienced mortality rates of up to 90% as a result of El Niño warming. Specifically, we measured the temporal variation in microsatellite allele frequencies and mitochondrial DNA diversity (mtDNA) in samples collected before (1991/1993) and after (2004) the El Niño event. Based on microsatellite data, only one island (Marchena) showed signatures of a genetic bottleneck, where the harmonic mean of the effective population size (Ne) was estimated to be less than 50 individuals during the period between samplings. Substantial decreases in mtDNA variation between time points were observed in populations from just two islands (Marchena and Genovesa). Our results suggests that, for the majority of islands, a single, intense El Niño event did not reduce marine iguana populations to the point where substantial neutral genetic diversity was lost. In the case of Marchena, simultaneous changes to both nuclear and mitochondrial DNA variation may also be the result of a volcanic eruption on the island in 1991. Therefore, studies that seek to evaluate the genetic impact of El Niño must also consider the confounding or potentially synergistic effect of other environmental and biological forces shaping populations
    corecore